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Abstract. The solution of the equations for the free-convection boundary-layer flow on a vertical plate with a 
prescribed power-law heating is considered for small values of the Prandtl number tr. It is shown that the boundary 
layer divides up into two regions. There is a thin inner region, of thickness O(o-t/l~ in which, to leading order, the 
temperature is a constant, but which is not determined from the inner solution. This gives rise to a large 
temperature on the plate of O(tr-2/s). This inner region drives a flow in a much thicker inviscid outer region, of 
thickness of O(tr-2/5). At  the outer edge of this outer region the ambient conditions are attained, and it is the 
matching between the two regions which determines the plate temperature. 

1. Introduction 

It was recognised from the outset by the original workers in free convection, [1, 2, 3], that 
the Prandtl number plays an important role in determining the nature of the flow and heat 
transfer in the boundary layer. Consequently there have been several studies in which this 
effect has been analysed in detail with asymptotic expansions being derived for both small 
and large values of the Prandtl number. Lefevre [4] was the first to write down the leading 
terms of the inner and outer expansions for both small and large Prandtl numbers, while at 
the same time a solution for large Prandtl number was obtained by Stewartson and Jones [5], 
who considered the free convection on an isothermal vertical plate. They showed that, in this 
limit, the boundary layer divided into two regions, a thin inner region in which the 
temperature decreased from its value on the plate to that of the ambient fluid and a much 
thicker outer region which was driven by the flow in the inner region and in which the fluid 
was at its ambient temperature. This work was later extended by Kuiken [6] and Eshghy [7]. 
The case when a uniform surface heat flux boundary condition is applied on the plate has 
been treated by Roy [8]. 

At the other end of the Prandtl number range, Kuiken [9] derived a solution for the 
free-convection boundary layer on an isothermal vertical plate which was valid for small 
Prandtl numbers. Here the boundary layer again divides into two regions, but now the inner 
region is, to leading order, isothermal (at the same temperature as the plate), with a thicker 
outer region which is effectively inviscid and at the outer edge of which the ambient 
conditions are attained. 

It is the purpose of this paper to complete the discussion on the small Prandtl number 
solutions for a vertical plate by considering the case when a prescribed surface heat flux 
rather than a given temperature variation is prescribed on the plate. (This situation, as far as 
we are aware, has not been treated previously.) The case we consider in detail is when this 
applied heat flux is proportion to x ~, in which case, [10], the governing equations can be 
reduced to similarity form. The solution is similar to that found by Kuiken [9] for an 
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isothermal plate in that the boundary layer divides up into two regions, with the inner one 
again being isothermal, but here we have to determine this temperature by matching with 
the outer inviscid region. Also, we find that the scalings for the two regions are different to 
the isothermal plate case. 

2. Equations 

The basic equations are set out in Merkin [10] and need not be repeated fully here. Taking 
the condition on the temperature ( a T / a y ) y =  o = - x  ~, where T is the temperature and x and y 
are co-ordinates measuring distance along and perpendicular to the plate, respectively (all 
variables are non-dimensional), the boundary-layer equations for free convection on a 
vertical plate can be reduced to the ordinary differential equations 

f " + o + l - - T - ) f f  - 

- -  m 

o r  

( la)  

( lb)  

where primes denote differentiation with respect to the independent variable 7/. The 
equations for the uniform heat flux case (A = 0) were derived originally by Sparrow and 
Gregg [2]. To obtain equations (1) we have written 

I~ = X(4+A)/Sf('/~) , T ~-" x(l+4A)/50('l'~) , 71 = yx (h-l)/5 (2) 

where q, is the stream function. 
The boundary conditions to be applied are 

f ( 0 ) = 0 ,  f ' ( 0 ) = 0 ,  0 ' ( 0 ) = - 1 ,  f'---~0, 0 -+0 ,  as 7/--*~. (3) 

Here o" is the Prandtl number and we are looking for a solution of equations (1) subject to 
boundary conditions (3) valid for o" ~ 1. 

It has been shown by Merkin [10] that equations (1) and (3) possess a solution only if 
A > - 1  and we will assume that this condition on A holds throughout in the present work. 

3. Solution 

Equations (1) are similar to those considered by Kuiken [9] for the isothermal plate problem 
(though the boundary condition on 0 on 7/= 0 is different) so it is natural as a first attempt at 
obtaining a solution for tr ~ 1 to follow Kuiken and leave equations (1) unsealed. Then 
equation (lb) gives 0" = 0, and so using (3) 0 = a - ~ for some constant a. When this is then 
substituted into equation (la) and a solution for large 7/sought we find that this has to be of 
the form f -  A r t  3/2 + �9 �9 �9 for some constant A. However, when this functional form for f is 
tried in equation (la)  we get A 2 = - 4(1 + A) -1 < 0  (since 1 + A > 0 )  which is unacceptable. 
This leads to the conclusion that the inner region must also be scaled. 

A more detailed consideration of equations (1) shows that this inner region has a thickness 
of 0 ( 0  -1/1~ ) and so is thin relative to the isothermal plate case (where the inner region is of 
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O(1)). This then suggests putting 

f =  or-a/ '~ 0 = o'-2/5H(~),  

Using (4), equations (1) become 

= or- 1/107. (4) 

(5a) 

(5b) 

subject to the boundary conditions on ~ = 0 that 

F(0) = 0 ,  F'(0) = 0 ,  H ' (0)  = - o  "a/2 (6) 

The outer boundary conditions are relaxed at this stage (primes now denote differentiation 
with respect to the scaled inner variable ~). 

Boundary conditions (6) suggest looking for a solution by expanding: 

F = F 0 + orl/ZF 1 + - - - ,  n = H 0 + O"1/2/-/1 + ' ' ' .  (7) 

Equation (5b) then gives H i = 0 and since from (6) H~(0)= 0, we get 

H o = a o (8) 

where a 0 is a constant which will be determined from matching with the outer region. We 
note that to leading order the inner region is isothermal but that its temperature is large, of 
O(or-2/5), and is not determined from the solution in the inner region but will be fixed by 
matching with the outer region. In this respect it is different from the prescribed temperature 
case. 

Using (8), equation (5a) becomes 

F '  o' + a o + ~ - - ~ ) F o F  o - F02 = 0. (9) 

To solve this equation we scale the unknown constant a 0 out of equation (9) by writing 

( 5 ~3/4 1/47- (3  +2A~1/4 1/4. (10) 
F 0= \~--~--~/ a0 r0 ,  ~=  \ ~ /  a0 

(we are assuming that a 0 > 0, which we find is the case from the matching and is the only 
physically realistic possibility). Equation (9) then becomes 

( 4 + A "~F,F,, F'~' + \.3-'--~-A ] o o + 1 - V'o z = 0 (11) 

(primes denote differentiation with respect to ~). From (11) we can readily see that the outer 
condition on F0 must be 
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Fo ~ ~ +/~o (12) 

for some constant 60 . 
Using condition (12) equation (11) can then be integrated numerically. We find that, for 

A = 0 (uniform plate heat flux) P ~ ( 0 ) =  1.25913 and b 0 = -0 .61782.  
At  O(o-*/2), equation (5b) gives H'~ = 0 and then since H~(0 )=  - 1  we obtain 

H,  = - r + a, (13) 

for some further constant a I . We then use (13) in equation (5a) to obtain an equation for F 1 , 
which is then scaled using (10) for F 0 and ~ and by putting F 1 = 5(3 + 2A)-lao~P~. This then 
gives the equation for F1 as 

F1 + tl, ~ § ( 3 4 ~ A ) ( F o F ~  + FoF1) - , - ,  . . . .  " - 2 F o F  1 = 0 (14) 

where d 1 ,/4,,, + 2A)l/45-w4 = a l a  o ~ . T h e  bot, ndary conditions are P l ( 0 ) = 0 ,  /3'1(0 ) = 0  and, 
from equation (14), that 

( 3 + 2 A  ( 4 + A  '~/~ ~ 
F'---\2~-~3-A))~2+ i{ d'- \ 3 A + 2 /  0j ~[- bl (15) 

as ~---~ 0% where b, is another constant. 
We notice that equation (14) involves the as yet unknown constant d, and so this equation 

cannot be solved at this stage. The unknowns a 0 and (11 are determined from matching with 
the solution in the" outer region, which is what we consider next. Before doing so, however,  
we note that at O(o-) we obtain H~ = 1(1 + 4A) a o F ~ ,  so that for ~ >> 1: 

/ l + 4 A ~ /  5a 0 ~1/2 ~.2 
(16) 

where a 2 and c 2 are further constants. The first and second terms in (16) contribute to the 
O(1)  and O(o- 1/2) solutions respectively in the outer region. 

To obtain the scalings for the outer  region we first note that in the inner region O is of 
0 ( o  "-2/5) and that f is of O(o,-1/5,/) at the outer edge of the region. Using this and the 
requirement that in the outer region all the terms in equation ( lb)  should balance we arrive 
at the scalings for the outer  region as 

f = o--3/S~b(Y), O = o - - 2 / s h ( Y ) ,  y = o-2/5/. (17) 

From (17) we see that the thickness of the outer region is of O(o- -2/s) compared with a 
slightly larger thickness of 0 ( 0  "- '/2) for the prescribed temperature case,, [9]. 

Using equation (17), equations (1) become 

(18a) 

(18b) 



Free convection on a heated vertical plate 277 

(where primes now denote differentiation with respect to the outer variable Y). The 
boundary conditions for large Y are that 

th'---~ 0 ,  h-->0. (19) 

The behaviour of the solution for small Y is obtained from matching with the solution in 
the inner region (as ~--->~). Consider 0 first. From (8), (13) and (16) and using the result 
that ~ = tr-1/2Y, we have 

( l + 4 A ~ (  5a 0 ) l / 2 a  0 
h = a o -  Y +  \ ~ / \ - ~ - - ( _ - ~ - ~ /  -~ Y 2 + . . . + o r l / 2 ( a l  + a 2 Y + . . . ) + . . .  (20a) 

for Y ~  1. To find the behaviour of th for Y ~  1 we use the asymptotic forms of (12) and (15) 
for F0 and FI and then the scaling (10) to obtain 

1/2 ( 5a ~ ~1/2 5 ( 3 + 2 A ]  y2 
6 = \ 3 + 2 A /  Y - 2 ( 2 + 3 A )  \ ~ /  + " "  

{ ~1[ ( 4 + A ) ( 3 + 2 A ] ~ / 2  b ] (  5____~ 1/2__275 + ' ' ' Y  } +or 1/2 
bo+ z a 1 - \ 2 + 3 A ]  \ 5a o ] ~  

+ . . .  
a0 

where 

[ ~ \ 3 / 4  
i -  I I 4 1  "" | 

b o = Ooa o ~ ]  �9 

(20b) 

The form of boundary conditions (20a, b) suggests looking for a solution of equation (18) 
in the form 

~b = th0 + o'l/2thl + " "  , h = h o + orl/2h 1 + . . -  . (21) 

The leading-order terms satisfy the equations 

/ 4 + A \  , ( ~ )  
h o + k---~}~botho - ~b'o2 = 0 ,  (22a) 

h;  + [--ff--)ckoho - ~b;h o = 0 (22b) 

with, from the matching conditions (20), that 

ho = ao - Y + \ g - T ~ , '  ao -~- + - . . ,  (23a)  

( 5a 0 ~1/2 5 ( 3 + 2 A ~  1/2 
th0 = s Y -  2(2+3A) \ ~ /  y2 + . . .  (23b) 

for Y ~ I ,  and ~b~--~0, h0--->0 as Y-->~. 
It would appear at first sight that the system given by (22) and (23) is over-constrained in 
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that it is a fourth-order  system with only three arbitrary constants (a 0 and two from the 
conditions for Y large). A further consideration of  equations (22) reveals that the next term 
in (23b) should be of O(Y  5~2§ which does not appear from the expansion in the inner 
region in powers of o l/2 so that (23b) should be amended to 

( 5a  ~ ~1/2 5 (3  + 2A ~1/2y2 doYS(Z+a)/(4+x) 
~o = \3-'-~-~-/ Y 2(2 + 33.) \ - - ~ a o  / + + " "  (23c) 

where d o is a further constant. This form for (23c) then in turn requires that the expansion 
(7) in the inner region be modified to include a term of O(0-~176 A similar situation 
was found by Kuiken [9] for the prescribed temperature  case. 

The syStem given by equations (22) and (23a, c) can now be solved numerically, the 
solution determines the constants a 0 and d 0. A little care is needed in doing this as equation 
(22a) has a singularity at Y = 0, and to overcome this the numerical integration was started 
at a ~small but non-zero value of  Y, with the forms for ~b 0 and h 0 as given by (23a, c) used to 
start the integration. The starting value of Y was successively reduced until the solution (and 
the values of a 0 and do) did not change to the required accuracy; a value of Y = 0.001 was 
used for the results quoted.  On performing these calculations, we found that (for A = 0) 
a 0 = 1.31411, d o = 0.11672 and ~b(oo) = 1.37056. 

The equations for ~bx and h 1 a r e  

hi + (~_.~_)(~0~ ~ + t~ ~t~l ) 2(3 + 2A) (24a) 

h~ + ~ - - ~ ) ( ~ b o h  1 + tkah~) - (tk~h 1 + tk~ho) = O, (24b) 

to be solved subject to the conditions 4~--->0, h~--->0 as y---> oo and, from (20), that 

h 1 = a 1 + a 2 Y  + � 9  , 

11- / 4 + A  \ / 3 + 2 A \  1/2 ] /  5 \ Y 

a 0 

(25a) 

(25b) 

As for equations (22) the numerical investigation had to be started at a small non-zero 
value of Y. To get a solution it was found to be necessary to expand the solution of equations 
(24) for small Y to include the terms of  O(Y 2) in (25a) and of O (Y  20§247 in (25b). 
The solution at this stage appeared to be sensitive to very small changes in the leading order  
solution and so a solution could not be obtained to the same degree of accuracy as was 
possible for equations (22). We found that,  for A = 0, a m = 0.273, a 2 = 0.109 and ~bl(~ ) = 
- 0 . 1 0 0 .  

Having determined a 0 and a 1 the value of d 1 can be found. For  A = 0 we get d 1 -- 0.257. 
This value can then be used to complete the solution of equations (14), the equations for the 
first perturbat ion in the inner region. We found that F ~ ( 0 ) = -  1.099 from which we get 
finally that (d2F0/d~2)0 = 1.75690 and (d2F1/d~2)0 = - 1.237. 

The expansion in the inner and outer  regions can be continued to higher-order terms, as 
seen above the next terms will be of 0(0-3/4). The matching between the two regions then 
determines the further constants which arise. This is not pursued further here. 
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4. Results 

We have shown that for small values of the Prandtl number o', the solution of equations (1) 
gives rise to a large plate temperature,  of O(tr -2/5) and a skin friction (related to 
(d2f/dr/2)n=0) of O(o'-3/1~ In particular we have found that, for the constant heat flux case 

0(0) = o--2/5(1.31411 + 0.257o "1/2 + - -  -) ,  (26a) 

f"(0)  = o'-3/1~ - 1.237o "1/2 + - - . ) .  (26b) 

To check on the range of applicability of (26), the original equations (1) were solved for 
small values of the Prandtl number using a standard numerical matching procedure for 
solving two-point boundary value problems. As o- was decreased this became increasingly 
more difficult to do. Because of (17) it was necessary to apply the outer boundary condition 
at successively larger values of ~/, for o" = 0.0002 (the lowest value of o- for which solutions 
were obtained) a value of 77 = 400 was required. Also, since values of f"(0)  and 0(0) became 
increasingly larger as o" was reduced, and the behaviour at large ~7 appeared sensitive to small 
changes in estimates for these, requiring accurate initial estimates for these quantities, tr 
could be decreased only in very small increments. 

To compare these numerical results with (26), graphs of 0(0) and f"(0)  obtained from 
expansions (26) (shown by the broken lines) and from the full solution of equations (1) are 
shown in Figs. 1 and 2, respectively. These figures clearly show that the asymptotic 

12 

0 (0) 

' \  

3 t ( ~  i o o 

O, O0 O, 02 O, 04 O, 06 O, 08 O, 10 

Fig. 1. Graphs of 0(0) obtained from the numerical solution of equations (1) (shown by the full line) and from 
series (26a) (shown by the broken line). 
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F" (0) e 

4 6 ~\ I 

! ! 

O. O0 O. 02 O. 04 O. 06 O. 08 O. 10 

Fig. 2. Graphs of f"(0) obtained from the numerical solution of equations (1) (shown by the full line) and from 
series (26b) (shown by the broken line). 

expansions (26) approach the numerical solution of the original equations as cr is decreased. 
Even with o-= 0.1, (26) could be used to give reasonable estimates for both 0(0) and f"(0). 
As a more stringent test on the applicability of the series, values of 0(0)g2~ 5 and f"(O)o "3/1~ 
as calculated from (26) are shown in Tables 1 and 2, being compared with these quantities 
calculated from the numerical solutions of equations (1). Again we can see that there is very 
good agreement between the two for small o-. 

The results given in Tables 1 and 2 (and Figs. 1 and 2) are derived from the solution in the 
inner region, and as a further check on the analysis, we consider the values of f(~), as this is 
a quantity derived from the solution in the outer region. From (17) f(~) is of O(cr -3/5) for 

Table 1. Values of O(O)o "z/5 obtained from series (26a) and from the numerical solution of equations (1) 

Numerical 
r Series solution 

0.0050 1.3323 1.3599 
0.0025 1.3270 1.3466 
0.0020 1.3256 1.3432 
0.0015 1.3241 1.3393 
0.0010 1.3222 1.3347 
0.0008 1.3214 1.3326 
0.0006 1.3204 1.3301 
0.0004 1.3193 1.3272 
0.0003 1.3186 1.3254 
0.0002 1.3177 1.3234 
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Table 2. Values of f"(O)~r 3:1~ obtained from series (26b) and from the numerical solution of equations (1) 

Numerical 
cr Series solution 

0.0050 1.6694 1.7025 
0.0025 1.6951 1.7172 
0.0020 1.7016 1.7210 
0.0015 1.7090 1.7254 
0.0010 1.7178 1.7308 
0.0008 1.7219 1.7333 
0.0006 1.7266 1.7362 
0.0004 1.7322 1.7397 
0.0003 1.7355 1.7418 
0.0002 1.7394 1.7444 

Table 3. Values of f(oo)tr 3:s obtained from series (27) and from the numerical solution of equations (1) 

Numerical 
cr Series solution 

0.0050 1.3635 1.3716 
0.0025 1.3656 1.3711 
0.0020 1.3661 1.3710 
0.0015 1.3667 1.3709 
0.0010 1.3674 1.3707 
0.0008 1.3677 1.3708 
0.0006 1.3681 1.3707 
0.0004 1.3686 1.3707 
0.0003 1.3690 1.3706 
0.0002 1.3691 1.3706 

for  0- ~ 1, and for A = 0 we found that  

f(oo) = 0--3/5(1.37056 - 0.100o -1/2 + . . . ) .  (27) 

Values of O'3/5f(00) calculated f rom (27) are given in Table  3 and compared  with values 
obtained f rom the numerical  solution of equations (1). He re  again there is good agreement  
between the series and the numerical  results. The  slight oscillation in the last decimal place 
quoted in the values of  o'3/5f(oo) calculated f rom the numerical  solutions suggests that  the 
coefficient of  the next t e rm in the expansion,  of  O(0- 3/4) for A = 0, makes  a contribution 
comparable  with the 0(0-1/2) t e rm for the values of  0- quoted in Table  3. 

5. Conclusion 

We have considered the behaviour  of  the solution of the equations for the free-convection 
boundary- layer  flow on a vertical plate with a prescribed power-law heating for small values 
of  the Prandtl  number  0-. We have shown that  the boundary  layer divides up into two 
regions, there is a thin inner region of thickness 0(0-1/1~ in which the t empera tu re  is 
constant to leading order.  This generates  a large t empera ture  on the plate,  of  0(0--2/5).  This 
inner region sets up a flow in a much thicker inviscid outer  region of thickness of  O(0--2/5). 
A t  the outer  edge of this outer  region the ambient  conditions are attained and it is the 
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matching between the two regions that determines the plate temperature. A similar situation 
was found by Kuiken and Rotem [11] in their solution of the buoyant plume for large Prandtl 
numbers. 
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